Detailed investigation of thermal convection in a liquid metal under a horizontal magnetic field: suppression of oscillatory flow observed by velocity profiles.
نویسندگان
چکیده
Thermal convection experiments in a liquid gallium layer were carried out with various intensities of uniform horizontal magnetic fields. The gallium layer was in a rectangular vessel with a 4:1:1 length ratio (1 is the height), where the magnetic field is applied in the direction normal to the longest vertical wall. An ultrasonic velocity profiling method was used to visualize the spatiotemporal variations in the flow pattern, and the temperature fluctuations in the gallium layer were also monitored. The observed flow pattern without a magnetic field shows oscillating rolls with axes normal to the longest vertical wall of the vessel. The oscillatory motion of the flow pattern was suppressed when increasing the applied magnetic field. The flow behavior was characterized by the fluctuation amplitude of the oscillation and the frequency in the range of Rayleigh numbers from 9.3 x 10³ to 3.5 x 10⁵ and Chandrasekhar numbers 0-1900. The effect of the horizontal magnetic field on the flow pattern may be summarized into three regimes with increases in the magnetic intensity: (1) no effect of the magnetic field, (2) a decrease in the oscillation of the roll structure, and (3) a steady two-dimensional roll structure with no oscillation. These regimes may be explained as a result of an increase in the dominance of Lorentz forces over inertial forces. The power spectrum from the temperature time series showed the presence of a convective-inertial subrange above Rayleigh numbers of 7 x 10⁴, which suggests that turbulence has developed, and such a subrange was commonly observed above this Rayleigh number even with applied magnetic fields when the rolls oscillate.
منابع مشابه
Numerical Study of turbulent free convection of liquid metal with constant and variable properties in the presence of magnetic field
In this research, turbulent MHD convection of liquid metal with constant and variable properties is investigated numerically. The finite volume method is applied to model the fluid flow and natural convection heat transfer in a square cavity. The fluid flow and heat transfer were simulated and compared for two cases constant and variable properties. It is observed that for the case variable pro...
متن کاملEffects of thermal diffusion and chemical reaction on MHD transient free convection flow past a porous vertical plate with radiation, temperature gradient dependent heat source in slip flow regime
An analytical investigation is conducted to study the unsteady free convection heat and mass transfer flow through a non-homogeneous porous medium with variable permeability bounded by an infinite porous vertical plate in slip flow regime while taking into account the thermal radiation, chemical reaction, the Soret number, and temperature gradient dependent heat source. The flow is considered u...
متن کاملThe Influence of Thermal Radiation on Mixed Convection MHD Flow of a Casson Nanofluid over an Exponentially Stretching Sheet
The present article describes the effects of thermal radiation and heat source/sink parameters on the mixed convective magnetohydrodynamic flow of a Casson nanofluid with zero normal flux of nanoparticles over an exponentially stretching sheet along with convective boundary condition. The governing nonlinear system of partial differential equations along with boundary conditions...
متن کاملAnalytical and numerical investigation of heat and mass transfer effects on magnetohydrodynamic natural convective flow past a vertical porous plate
The aim of this investigation is to study the effect of hall current on an unsteady natural convective flow of a viscous, incompressible, electrically conducting optically thick radiating fluid past a vertical porous plate in the presence of a uniform transverse magnetic field. The Rosseland diffusion approximation is used to describe the radiative heat flux in the energy equation. Analytical a...
متن کاملThermal Convection in a (Kuvshiniski-type) Viscoelastic Rotating Fluid in the Presence of Magnetic Field through Porous Medium (TECHNICAL NOTE)
The effect of magnetic field on an incompressible (Kuvshiniski-Type) viscoelastic rotating fluid heated from below in porous medium is considered. For the case of stationary convection, magnetic field and medium permeability have both stabilizing and destabilizing effect on the thermal convection under some conditions whereas rotation has a stabilizing effect on the thermal convection. In the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 82 5 Pt 2 شماره
صفحات -
تاریخ انتشار 2010